
Climatologies and long-term changes of mesospheric wind and wave

measurements based on radar observations at high and

mid-latitudes.

Sven Wilhelm1, Gunter Stober1, and Peter Brown2

1Leibniz Institute of Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany

2Department of Physics and Astronomy, Western University, London, Ontario, Canada

Correspondence: S. Wilhelm (wilhelm@iap-kborn.de)

Abstract. We report long-term observations of atmospheric parameters in the mesosphere and lower thermosphere (MLT)

made over the last two decades. Within this study, we show based on meteor wind measurement, the long-term variability of

winds, tides, and kinetic energy of planetary and gravity waves. These measurements were done between the years 2002 and

2018 for the high latitude location of Andenes (69.3◦N, 16◦E) and the mid-latitude locations of Juliusruh (54.6◦N, 13.4◦E)

and Tavistock (43.3◦N, 80.8◦W). While the climatologies for each location show a similar pattern, the locations differ strongly5

with respect to altitude and season of several parameters. Our results show annual wind tendencies for Andenes which are

toward the south-west, with changes of up to 3 m/s per decade, while the mid-latitude locations showing smaller opposite

tendencies to negligible changes. The diurnal and semidiurnal tides also show different results for each location. Furthermore,

the kinetic energy for planetary waves showed strong peak values during winters which also featured the occurrence of sudden

stratospheric warming. The influence of the 11-year solar cycle on the winds and tides is presented.10

1 Introduction

Over the last several decades, studies of wind and wave action in the mesosphere and lower thermosphere (MLT) have focused

on coupling processes to layers above and below (e.g., Yiğit et al., 2016), dynamical processes of the wind (e.g., Fritts and

Alexander, 2003), the local variability of the measured winds (e.g., Stober et al., 2018) and long-term changes (LTC) of

winds and waves (e.g., Keuer et al., 2007). Wind measurements at these heights rely mainly on remote sensing techniques,15

like satellites, lidars, and radars. Each of these techniques has its own strengths and limitations as regards time and altitude

resolution or measurement conditions. Meteor radar sensing of the MLT has a long proven record due to their reliable, long-
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term measurement capability, independent of weather conditions. These radars detect the ionized plasma trails of meteors left

behind after the hypersonic passage of meteoroids in Earth’s atmosphere. The resulting meteor trails drift with the neutral

background wind. By measuring the radial velocities and the positions of the trail echoes in the sky, wind velocities of the

atmosphere can be determined. The measurements of these local winds and the associated tides are key inputs to validate and

update global circulation models.5

The general circulation of the MLT is strongly influenced by the transfer and deposition of atmospheric momentum, trans-

ported by upward propagating waves. This momentum perturbs the purely zonal geostrophic flow, which would exist in the

absence of any momentum exchange due for the case of an atmosphere in radiative equilibrium. In particular, the ageostrophic

meridional flow is affected by this momentum exchange, which leads to mesospheric up-welling and down-welling. As a con-

sequence, adiabatic cooling and heating occurs forcing the atmospheric temperature structure away from radiative equilibrium,10

resulting in a non-radiative equilibrium wind pattern (e.g., Middleton et al., 2001). The observed wind, in turn, is a superposi-

tion of several atmospheric waves, such as planetary waves (PW), tidal waves, and gravity waves (GW), which are categorized

according to their spatial extenst and periods.

Large scale PWs are formed primarily as a result of the geographic land-sea differences. They transfer warm air from the

tropics to the poles and return cold air towards the tropics keeping the atmosphere in thermal balance. They can be either15

stationary or zonally propagating, having a restoring force produced by the latitudinal variation of the Coriolis force. PWs have

global scales and periods between 2 and 30 days. They have nonlinear interactions which cause secondary waves (Mitchell

et al., 1999). The majority of MLT PW studies focus on the 2-day wave, due to its very large amplitude (e.g., Tsuda et al.,

1988; Forbes, 1995; Holden and Alexander, 2000; Matthias et al., 2013). They play an important role in dynamical processes

within the MLT and to the coupling to regions above and below.20

Migrating and non-migrating atmospheric tides in the MLT are crucial for understanding the dynamics in the atmosphere,

in particular for coupling processes between several atmospheric layers. They serve as a carrier for momentum, which can be

deposited in areas far away from their source region (e.g., Pedatella et al., 2012; Yiğit and Medvedev, 2015). Non-migrating

tides are generated by longitudinal differences in radial heating (e.g., Hagan and Forbes, 2002) and while propagating upwards

the tidal amplitude grows significantly due to the exponential density decrease. The dissipation of tides contributes to fluctua-25

tions in the mean wind flow (e.g., Lieberman and Hays, 1994). For equatorial latitudes, the most dominant tide is the diurnal

(24h), but with the exception of the linear tidal theory (Lindzen and Chapman, 1969), at middle and high latitudes, the diurnal

tide does not primarily lead the MLT. Therefore, at these latitudes it is the semidiurnal (12h) tide which is important, having

highest amplitudes during in the winter months and during the autumn transition (e.g., Hoffmann et al., 2010; Jacobi, 2012;

Pokhotelov et al., 2018).30

Primary GWs, which are generated in the troposphere propagate upwards, with the amplitude of the waves increasing

exponentially and efficiently transporting momentum and kinetic energy into the middle atmosphere. The main tropospheric

source of GWs is the airflow over orographic irregularities, such as mountains, the vertical movements in convection cells,

and strong wind shears in combination with jet instabilities. Here, gravity acts as the wavesrestoring force against vertical

movement. Depending on the propagation direction of the background wind relative to that of the GWs, strong filtering can35
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occur at different heights. For example, during the summer, the mainly eastward directed GWs are able to reach the mesosphere

because most of the westward propagating waves get filtered by the westward directed stratospheric background wind. If GWs

break in the MLT, they deposit upward transported momentum onto the background wind, which can lead to a wind reversal

(e.g., Fritts and Alexander, 2003). The horizontal scale of the associated excitation varies between several tens and several

thousand kilometers with associated periods of minutes up to one day (Tsuda, 2014).5

Examining the observed wind by decomposing it into its distinct spectral components has been performed by several studies

in recent years (e.g, Eckermann et al., 2016; Hysell et al., 2017; Shibuya et al., 2017; Baumgarten et al., 2018). For this study,

we use the approach of decomposing the wind according to Stober et al. (2017) by applying an adaptive spectral filter technique

(ASF). In this technique the decomposition of the observed wind is basically done by adapting the window length for each

tidal component and a vertical regularization of the phase slope using the classical harmonic approach:10

u,v = u0,v0 +
3∑

n=1

ansin(2π/Tn · t) + bncos(2π/Tn · t), (1)

where Tn takes the values of 24 hours and 12 hours to determine the diurnal and semidiurnal tide for each wind component.

an, bn are the coefficients of the appropriate amplitude. To estimate the PWs we take for Tn one season and the residuals

are defined as GWs. To illustrate the different components, Figure 1 shows a decomposition of the observed wind (top) into

the mean wind and tidal component (middle) and the GW residal (bottom). The decomposition is shown for the location of15

Andenes for nearly two weeks. Further information and a more detailed description regarding the algorithm can be found in

Section 2.

GW activity is often expressed in terms of spectra as a function of wave frequencies and wave numbers, which is rather

challenging considering the observational limitations. Therefore, Fritts and VanZandt (1993) described an energy spectrum for

the wind velocity, which is composed of a combination of several GWs. Tsuda et al. (2000) defines the total wave energy as20

the sum of the potential energy and kinetic energy Ek per unit mass, the latter being given by

Ek =
1
2
(u′2 + v′2 +w′2), (2)

where u′ and v′ are the perturbation of the horizontal wind velocity and w′ is the vertical wind perturbation to the wave

propagation direction. Even with very precise measurements w′ is much smaller than the horizontal perturbations and therefore

can be and is very often neglected.25

Long-term changes (LTC) in the atmosphere are complex. They are influenced by several factors including fluctuations in

solar and geomagnetic activity, which in turn can induce changes in the neutral density together with changes in the zonal

directed winds (e.g., Emmert et al., 2008; Stober et al., 2012), or by anthropogenic emissions of greenhouse gases, which

affect the troposphere through increased heating and causes cooling in the upper atmosphere (e.g., Beig, 2011; Laštovička
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et al., 2012). Several studies have investigated LTC based on radar measurements done for the northern high and mid-latitudes

as e.g., Middleton et al. (2001), Portnyagin et al. (2004); Portnyagin et al. (2006), Keuer et al. (2007), Jacobi et al. (2008),

Hoffmann et al. (2011), Iimura et al. (2011), Jacobi et al. (2015), and Lukianova et al. (2018). From these studies, meteor radar

wind observations show a tendency for the mid-latitudes of a stronger eastward and southward directed winds during the last

decade (e.g., Jacobi et al., 2015). For high latitudes, the zonal wind shows a time varying tendency with an overall eastward5

directed wind during the winter and also an increase of the semidiurnal tidal amplitude. However, large differences are present

among these studies which are based on different measurement intervals and different latitudes (e.g., Iimura et al., 2011).

In this study, we present climatologies and the decadal variability of winds, tides, gravity waves, and planetary waves from

the northern high latitude location Andenes, and the mid-latitude locations Juliusruh and Tavistock (CMOR). The data are

described in Section 2 and the resulting climatologies and decadal climate variabilities for the wind are presented in Section 310

and for diurnal and semidiurnal tides, gravity waves, and planetary waves in Section 4, respectively. Section 5 concludes the

paper.

2 Data

This study uses observations from three meteor radars (MR), which are located at the polar latitude station of Andenes (69.3◦N,

16.0◦E, Norway), the mid-latitude location Juliusruh (54.6◦N, 13.4◦E, Germany), and the mid-latitude location of Tavistock,15

the Canadian Meteor Orbit Radar (CMOR, 43.3◦N, 80.8◦W, Canada).

The Andenes MR was installed in 2002 and was run with a 15 kW transmitter at 32.55 MHz until May 2008. In May 2008 the

system was moved to a new location 4 kilometers away from the original site. Later in 2009, the system was further upgraded to

30 kW transmitting power. In 2011 and 2012 the original antennas were updated and replaced. Since 2012 the system runs in a

stable hardware configuration. However, the experiment settings also underwent some changes during this interval. From 200220

to 2015 (October) the radar ran an experiment with a pulse repetition frequency of 2096 Hz and a 3.6 km mono pulse using

a 2 km range sampling. In October 2015 the experiment was changed and the system is now operated with a pulse repetition

frequency of 625 Hz and transmits a 7-bit Barker code with 1.5 km range sampling.

The time series of the Juliusruh MR is a composite of several different radar systems. From 2002 to 2010 the OSWIN radar

was operated in a meteor mode interleaved to its normal MST-radar observations at a transmitting frequency of 53.5 MHz.25

These measurements were conducted 118 km west of the later Juliusruh MR site. In November 2007 the Juliusruh MR started

its operation as dual frequency radar at 32.55 and 53.5 MHz. The experiment settings were similar to the ones in Andenes

between 2002 and 2015. From 2014 to 2015 the system underwent several modifications. First, the experiment settings were

changed to run the 625 Hz pulse repetition frequency and a 7-bit Barker code with 1.5 km range sampling. From January

2014 until autumn 2014 the transmitter of the Juliusruh 32.55 MHz system was not operating and only 53.5 MHz system was30

observing. In spring 2015 the Juliusruh 53.5 MHz radar ceased its operation and the Juliusruh 32.55 MHz system remained

operational, but with an increased transmitting power of 30 kW. Since this last modification, the system operates continuously

in a stable hardware and experiment configuration.

4

Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-51
Manuscript under review for journal Ann. Geophys.
Discussion started: 12 April 2019
c© Author(s) 2019. CC BY 4.0 License.



The CMOR MR provides the longest and most homogeneous MR time series used in this study. The system did run in a more

or less unchanged configuration since 2002 as a triple frequency system (17.45 MHz, 29.85 MHz, and 38.15 MHz) near Tavi-

stock, Canada. Observations are carried out with a pulse repetition frequency of 532 Hz using a 11 km mono pulse and 3 km

range sampling. The 17 and 38 MHz radars each use a 6 kW transmitter, the 29 MHz system was upgraded from 6 to 12 kW

in the frame of the CMOR2 upgrade in May 2009. In this study, we compiled one homogeneous wind data set involving all5

available data of the triple frequency observations.

In this study, the composites and LTC are based on data sets for the years 2002 - 2018 for each location. The winds are obtained

applying a modified version of the all-sky fit (Hocking et al., 2001) and they have an hourly temporal resolution and partly

covering the heights between 70 and 110 km, with a vertical altitude resolution of 2 km. The different atmospheric waves are

extracted by an adaptive spectral filter (ASF) (Stober et al., 2017). In this study, we focus on observed mean winds, tides, grav-10

ity, and planetary waves. The statistical uncertainties are based on the applied fitting procedure by taking into account full error

propagation of the radial wind errors, as well as the number of meteors per altitude and time bin. The resulting uncertainties

of the wind vary in the range of 2 - 16 m/s, with larger errors occurring in bins with fewer meteors or at the upper and lower

edges of the meteor layer. More information about the experimental setup and the technical specifications for the Andenes and

Juliusruh meteor radars, as well as about the wind analysis and the obtained uncertainties for all three radars can be found in15

Stober et al. (2017, 2018). More technical information about CMOR and CMOR2 are described in e.g., Webster et al. (2004);

Jones et al. (2005); Brown et al. (2008).

The ASF provides a wave decomposition of our original observed time series into a daily mean wind, a diurnal and semidi-

urnal tide as well as a gravity wave residuum with an hourly resolution. These hourly resolved time series are then averaged to20

daily means keeping the error information. The ASF is designed to account for the intermittency of waves, in particular, of tides

and mean winds for time periods less than a day. Therefore, we adapt the window length of the harmonic tidal fit to the number

of wave cycles. In the first step, we fit the daily mean wind with a window length of 24 hours plus all tidal components. The

next step uses the daily mean wind and the diurnal tidal component as boundary to extract the information of the semidiurnal

tide and so forth. This procedure is applied as a sliding window along the time series and all wave information (amplitude and25

phase) for all waves is determined for each time step. The technique is least squares based and, hence, robust against unevenly

sampled data or data gaps shorter than the length of the window. Another benefit is the least squares implementation is the

error propagation to all derived parameters. Further, we implemented a regularization constraint for the mean winds, diurnal

and semidiurnal tide making use of the vertical wavelength information assuming that the mean winds and tidal phase should

only show gradual changes within a vertical kernel function of 8 km mean winds and 10 km tidal phases. The daily mean30

wind time series (tides and gravity waves removed) are further analyzed to obtain the planetary wave activity. Therefore, we
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define a seasonal background wind based on the daily mean time series of u0 and v0 for the zonal and meridional component,

respectively;

u0,v0 = um,vm +
2∑

i=1

ansin(2π/Tn · t) + bncos(2π/Tn · t); (3)

Here um and vm are a seasonal mean zonal and meridional wind, an and bn are coefficients for the seasonal subharmonics

with periods Tn = 365.25/n days (n= 1,2). We determine the background wind field for every month at the 15th by fitting5

the above described seasonal model to the daily mean wind time series using a 2-year window centered at the respective month

and reconstruct the background wind time series for the other days for each month. The planetary wave activity is then given

by subtracting the previously obtained daily mean winds and the reconstructed background wind field. The benefit of this ap-

proach compared to other techniques, e.g. smoothing the data or running averages, is that it is more robust against larger data

gaps of up to months in length. Another benefit is that due to the long window used for the fitting seasonal peculiarities, e.g,10

sudden stratospheric warmings, are not affecting the monthly means, but are well captured in the planetary wave activity.

Monthly mean tidal amplitudes, GW and PW activity are derived by computing monthly medians of the available data sets.

Thus, the resultant time series contain some data gaps. However, there are still enough data points to estimate a LTC and a

potential solar cycle effect for all these waves for each month. The LTC and solar cycle effect are derived by using a linear15

trend model plus an 11-year oscillation. We intentionally did not apply a multiple regression analysis with F10.7 or sunspot

number as there might be a phase delay and no direct physical causality on how the different waves respond to changes in these

solar proxies. The resulting mean winds are:

u,vmm = au,v + mu,v · t+ a · sin(2π/11.0 · t) + b · cos(2π/11.0 · t); (4)

where u,vmm are the monthly mean zonal and meridional components for the mean wind and each wave, mu,v is linear20

change over the whole period, a and b are the solar cycle components, au,v is the mean at year 0, and t is the time in years.

3 Climatologies and long-term changes of the mean wind

Analyzing long time series always requires an estimate of the associated confidence values of the measured linear changes or

the other derived parameters. In this study, we conduct a full error propagation to all parameters using the covariance matrices

of the fitted functions. Based on this statistical uncertainty we are able to define the 90% and 95% confidence level given by25

x±σz. Here x is a parameter, σ is the statistical uncertainty of x and z is a factor, which takes values z = 1.64 for the 90%
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confidence interval and z = 2 for the 95% interval, respectively, assuming a Gaussian error distribution. We label the different

confidence intervals by dashed (90%) and solid (95%) contours for all derived parameters.

Mean wind climatologies at the MLT are often shown for a particular location or instrument or as averages over different

periods. In this study we present climatologies of mean winds, diurnal and semidiurnal tides, and PW, and GW activity cover-

ing more than 25◦ latitude from mid-latitudes to polar-latitudes. Thus we are providing a profile of the mean wind systems at5

the MLT over the northern hemisphere. Furthermore, the data sets span the same observational periods from 2002 to 2018 and

the winds are obtained by the same type of analysis.

The mean wind climatologies are shown in Figure 2. Every location shows a distinct seasonal pattern, with eastward directed

winds during the winter and a transition/reversal between east- and westward winds during the summer. Meridional winds are

northward directed during the winter and southward directed wind during the summer. The zero line transition is shown as10

a black contour line. The climatologies are obtained by averaging the data from every day for the whole time series using a

window of 5 days. The zonal wind pattern indicates two pronounced features when comparing the different latitudes. In winter,

the eastward directed winds are much stronger at CMOR with up to 40 m/s and decrease towards higher latitudes with 6 - 10

m/s. Further, CMOR shows a zero line crossing in the zonal winds around 100 km altitude, which is not seen at Juliusruh and

Andenes. Only during the fall transition does Juliusruh show for a month at altitudes above 95 km solely zonal wind. During15

summer the wind pattern looks rather similar, just the zonal wind reversal altitude increases from the mid-latitudes towards the

polar-latitudes by almost 8 - 10 km (June, July, August).

The meridional wind climatology also shows latitudinal differences. During the winter season, the mid-latitudes show north-

ward winds of magnitude 10 m/s. The summertime is characterized by a southward mesospheric jet of 10 - 15 m/s, which is

closely related to the zonal wind reversal. The most prominent feature in the meridional winds is the zero line and its altitude20

variation during the course of the year. At Andenes, northward winds occur only below 90 km altitude and then for only a few

months in winter. In contrast, at the mid-latitude stations northward winds are found at all altitudes throughout the winter and

southward winds for the summer months. Due to the different lengths of time series compared to other studies these results are

only partly consistent with findings of e.g.,Yuan et al. (2008b), Kishore Kumar and Hocking (2010), Hoffmann et al. (2011),

Jacobi et al. (2015), and Lukianova et al. (2018).25

Although the climatologies are statistically robust regarding the mean patterns in both wind components, there is a year-

to-year variability and also changes over much longer time scales. Figure 3 shows the time-series of the zonal (left) and

the meridional (right) winds for the high latitude location Andenes (top) and the mid-latitude locations Juliusruh (middle)

and CMOR (bottom). As described in Section 2, especially for Juliusruh, the system modifications resulted in an increase30

of the altitude coverage due to software and hardware improvements over several years. The seasonal pattern, shown in the

climatologies (Figure 2) is even more clearly visible in Figure 4, where the year-to-year variability is more pronounced, by

using the seasonal fit removing the PW activity from the time series.

Just by visual inspection of Figure 4 some of the year-to-year variability or LTC becomes visible, e.g. for the years 2003 -

2006 CMOR shows a westward directed wind regime above 100 km during summer, which disappears in more recent years.35
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Furthermore, there is an enhancement of the southward directed winds in Andenes after the year 2015 at altitudes above 95

km. All three latitudes have in common that the mesospheric zonal and meridional jet systems are modulated from year-to-year

and periods of a few years.

Monthly changes are estimated using the equation 4 and are shown in Figure 5 for both wind components. The dashed

black lines represent the 90% significance level, and the solid black lines the 95% significance level. It is rather obvious from5

Figure 5 that there is no common linear change at all three latitudes, and, thus we discuss each site separately. At Andenes, an

enhancement of the westward directed wind occurs during the begin of the year with values of up to 0.3 m/s/year, as well as for

the summer in the area above the transition height. After the fall transition, a small enhancement of eastward winds is found,

with values of up to 0.3 m/s/year. The meridional wind for Andenes shows a pronounced southward directed wind tendency,

with values of up to 0.5 m/s/year above ∼96 km for the winter and above ∼90 km for the summer. The LTC for Juliusruh is10

less significant, with changes which correspond to an eastward directed tendency during begin of the summer and westward

tendency below 90 km at the end of the summer. Furthermore, an eastward enhancement below 90 km between September

and November, with values of up to 0.5 m/s is found. The meridional component of Juliusruh shows tendencies towards south

between January and April and an opposite tendency between May and December. At the location of CMOR, the strongest

LTC occurs in summer with an eastward acceleration of the zonal wind, enhancing the zonal jet above 90 km and weakening15

the westward jet below with values of up to 0.5 m/s/year. Meridional winds at CMOR show a southward tendency between 90

and 100 km at the beginning of the year and some northward accelerations in summer and fall.

The seasonal analysis provides information about the mean zonal and meridional wind for each year and altitude. Figure 6

shows the vertical LTC based on annual mean values. The vertical profiles indicate the linear change per decade of the zonal

(red) and meridional (blue) wind. The most significant changes occur at Andenes in both wind components. The mean zonal20

wind speed seems to decrease between 85 - 100 km by up to 3 m/s/decade. The LTC of the meridional wind reaches values up to

2 m/s/decade. At mid-latitudes (Juliusruh) the zonal wind shows only a weak change per decade and an eastward acceleration

with 0 - 0.5 m/s/decade. The meridional winds indicate a more pronounced linear tendency. Below 85 km the meridional jet

seems to be further westward accelerated, whereas at higher altitudes an eastward acceleration is found. At CMOR the zonal

wind shows almost no tendency at all altitudes between 75 - 110 km. The meridional wind indicates a LTC above 90 km25

altitude corresponding to a northward acceleration of the mean circulation.

4 Climatologies and long-term changes of waves

4.1 Diurnal tides

The monthly median amplitudes and the associated composites for the tidal 24h-diurnal components are shown in Figure 7

and Figure 8. The seasonal pattern of the diurnal tidal (DT) amplitude shows a rather rapid increase around 100 km altitude30

and at least during the summer a secondary enhancement around 80 km altitude with values of ∼15 m/s. Comparing all three

locations, CMOR shows the strongest maximum and strongest mean amplitudes for the zonal diurnal tides, with mean values

larger than 25 m/s. This occurs at heights above 90 km and especially between January and April shows a general enhancement
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of the zonal diurnal tidal amplitude. Juliusruh reaches maximum mean values of ∼25 m/s only between the late summer and

autumn above 100 km. During this time, Andenes also shows the strongest diurnal tidal amplitudes in the zonal direction, but

with weaker maximal mean values of up to 20 m/s. The meridional diurnal tidal component of all three locations shows a

similar pattern, with enhancements of the amplitudes between summer and winter, for heights above 94 km, where it reaches

maximum mean values of over 30 m/s. All locations show a second increase during the summer around 82 km, and even higher5

up for CMOR, with mean values of 15 - 20 m/s. Another very prominent feature of the diurnal tidal amplitudes is related to

its polarization relation. At Andenes and Juliusruh the meridional component is significantly enhanced compared to the zonal

diurnal tidal amplitude. At CMOR this effect is less pronounced during June - December and reverses in spring, where the

zonal diurnal tidal amplitude is much larger compared to the meridional component.

Based on the long-term series Figure 9 indicates the interannual LTC for the diurnal components. For the zonal tide, Andenes10

shows no significant tendency. During the summer a significant westward directed tidal amplitude occurs in the westward wind

regime below 85 km , with values of up to 0.3 m/s/year. At the location of Juliusruh, significant changes take place in the zonal

component during the winter with a tendency towards a decreasing diurnal tidal activity above 90 km. However, at Andenes

and Juliusruh the zonal and meridional diurnal tidal amplitudes show only rather small changes from 2002 to 2018.

At CMOR significant changes emerge between 82 and 100 km in January. During the early winter, the LTC shows an15

increasing diurnal tidal amplitude with values up to 0.4 m/s/year for the zonal component and almost no change for the

meridional component. During the summer months, the LTC points towards a decreasing tidal amplitude with up to 1 m/s/year

for heights above 100 km. Meridional tidal diurnal amplitudes at CMOR show only small changes.

4.2 Semidiurnal tides

The 12h-semidiurnal tide is the most dominant wave in the MLT throughout the year at mid- and high latitudes. The time20

series of semidiurnal tidal (SDT) amplitudes is presented in Figures 10 and the SDT climatology is given in Figure 11. SDT

amplitudes are usually larger compared to DT amplitudes, and reach at the mid-latitude locations for the zonal component

maximum mean values of ∼30 - 40 m/s, and for the meridional component maximum mean values of 20 - 40 m/s. In general,

the semidiurnal tidal components at all locations show similar seasonal pattern. SDT amplitudes increase with increasing

heights and reach maximum values around 100 km altitude. The seasonal pattern of the SDT shows a very similar morphology25

throughout the year at all three MR sites. There is a winter maximum, a spring minimum and a second amplification during

September - October and a second minimum in November. At Andenes the SDT amplitude reaches mean values for both

components of up to 30 m/s. The highest SDT amplitudes are seen at the mid-latitude station Juliusruh during the winter

months with values of up to 40 m/s. In contrast, the fall transition reaches its highest SDT amplitudes of ∼ 40 m/s (zonal

component) at CMOR.30

At Andenes and Juliusruh the zonal and meridional wind components are indicate a circular polarization of the SDT. Such

a circular polarization of the SDT is present during the winter months at CMOR. However, the fall transition above CMOR

looks slightly different. The zonal SDT amplitude appears to be larger than the meridional component indicating an elliptical

polarization of the wave.
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The LTC for the semidiurnal tides is shown in Figure 12. All three MR exhibit slightly increasing SDT amplitudes around

90 km almost throughout the whole year. However, at Andenes and Juliusruh the most significant changes emerge above 90

km during the early winter (November-December) showing a rather strong decrease of the SDT with amplitudes of 1 m/s/year.

This behavior is not reflected at CMOR. There it appears that the SDT amplitudes in November are further decreasing in the

zonal and meridional component. CMOR also exhibits a significant increase in the wintertime (December-February) of SDT5

amplitudes above 90 km.

4.3 Planetary and Gravity waves

Figure 13 shows the PW energy, which is estimated by harmonic decomposition as described in Section 2. All three locations

show striking enhancements during the winter, especially during years when a major sudden stratospheric warming (red arrow)

takes place. During the times when the sudden stratospheric warming occurs, the PW energy reaches values of up to 30010

m2/s2. During minor sudden stratospheric warmings (green arrow) an increase of the PW energy is also present, but weaker

than during major sudden stratospheric warming. Even for the year 2016 when no SSW took place, an enhancement of the PW

energy is visible. This is due to a strong wind reversal in the upper mesosphere, as described in Stober et al. (2017). For the

rest of the year, the PW activity is comparatively low, with sparse enhancements observed at CMOR.

In Figures 14 and 15 the long-term observations of kinetic gravity waves energy (GW) and the corresponding GW energy15

climatology are presented. The general seasonal pattern for all three locations are similar. An enhancement of the kinetic

GW energy with increasing heights is noticeable, as well as a seasonal pattern with stronger GW energy between the autumn

transition and the end of the winter, with values of up to 400 m2/s2. Below an height of ∼82 km during the summer is a

secondary enhancement, which is especially noticeable at Andenes and Juliusruh. At that time, values of up to ∼150 m2/s2

are recorded for Andenes, and up to ∼250 m2/s2 for Juliusruh.20

5 Wind dependencies on an 11-year oscillation

For long-term wind data which exceeds the period of a solar cycle it is advantageous to consider the influence of an 11-

year oscillation on the wind. Figure 16 visualizes the impact of an 11-year oscillation on a seasonal basis. All three stations

show nearly no changes in the meridional component, while the zonal winds are highly influenced by the oscillation during

the summer around 80 km and during the winter. At the equinoxes, the zonal wind component is unaffected by the 11-year25

modulation.

In addition to the annual profile, Figures 17 and 18 show seasonal linear influences of solar radiation on the tidal components.

The influence of the 11-year oscillation on the diurnal tides is shown in Figure 17. Andenes and Juliusruh show no changes to

the zonal component, while the 11-year oscillation in CMOR is prominent above 90 km. For the meridional component, only

Andenes and CMORs summer region above 94 km are affected, by values of up to 4 m/s. For the semidiurnal tides (Figure30

18) all locations show for both components enhancements during after the autumn transition above ∼90 km, which remains

for CMOR until the summer. These strong values are remarkable because during the time after the autumn transition the tidal
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amplitudes are quite low (see Figure 11). The tidal components are modified for all three locations by amplitudes of up to 4

m/s.

6 Discussion

We have used meteor radar observations to characterize the mesospheric and lower thermospheric (MLT) winds, tides, gravity

waves, and planetary waves for the northern high latitude site of Andenes and the northern mid-latitude sites of Juliusruh and5

CMOR. Based on measurements between the years 2002 and 2018, long-term changes (LTC) were estimated for winds and

tides at each location. Depending on the length of the data series, the latitudinal location and the observed heights, long-term

tendencies can differ significantly with latitude.

For the mean zonal and meridional wind, the typical wind pattern occurs with eastward directed winds during the winter10

and a switch from westward to eastward winds during the summer. The transition heights were located at lower heights for

the mid-latitude locations. Changes between northward directed winds in the winter and southward winds during the summer

were apparent from all the measurements. Furthermore, above 100 km occurs only for CMOR after the autumn transition a

westward directed wind field, which lasts until the spring transition. These climatologies fit generally to model studies made

by (e.g., Jacobi et al., 2009; Geißler and Jacobi, 2017), or to the results of remote sensing instruments by (e.g., Schminder and15

Kürschner, 1994). However, some of these studies show smaller differences in the wind values than we find, which we ascribe

to different time series or disparities in the window fit length.

Based on annual mean values, the winds in the MLT over Andenes show a tendency of decreasing amplitude for the zonal

and the meridional component. In contrast, the mid-latitude locations show weaker tendencies or only increasing tendencies20

above a certain altitude. Stronger differences occur when comparing seasonal tendencies for each location, where in some

cases opposite tendencies for the same height and same season can occur. Comparing these tendencies with previous stud-

ies, differences are to be expected based on differently used time-series and on different averaging periods. Enhancements or

weakenings of the mean zonal wind is also expected to take place due to several geophysical processes, such as the quasi-

biennial-oscillation or the El-Niño -Southern Oscillation, which are not incorporated in some studies.25

In (Hoffmann et al., 2011) long-term tendencies were measured based on medium frequency meteor radar for the location

of Juliusruh. They found a similar increasing tendencies during the autumn, but a different tendencies during the spring. This

difference may due to the particular time series they used, namely between 1990 until 2010. In the work by Jacobi et al. (2015),

LTC were estimated, for the mid-latitude meteor radar station Collm (Germany) for the years 2004 until 2014. They used30

monthly mean meteor measurements and found tendencies similar to our work for the winter through to the summer months

for both wind components. However, they reported an opposite LTC for the meridional component during autumn compared to

our results. Using the model MUAM, Geißler and Jacobi (2017), also shows the northward tendency during the summer for both
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mid-latitude MRs, based on trends over a 37 year period. In addition, they found a strong opposite LTC for summer at Andenes.

Concerning tides, we find that the observed SDT component dominates over the DT component at Andenes and Juliusruh

but reaches nearly similar zonal amplitudes for the lower latitude location of CMOR. The amplitudes of the meridional diur-

nal component exceeds the value of the SDT for heights above 100 km. The diurnal component is characterized by a second5

enhancement during the summer, while the SDT component shows an increase in amplitude during the autumn transition at all

locations.

The amplitudes and the seasonal occurrence of tides, especially the SDT, corresponds well to an earlier study made by Man-

son et al. (2009). Their work covered one year with the SDT and DT reported for several northern latitude locations. Similar10

to the case for the winds, the seasonal LTC pattern differs by location. While for the tidal components Andenes and Juliusruh

show similar changes, CMOR shows somewhat opposite tendencies. Similar climatologies for the SDT tides were found at the

latitude of ∼40◦N based on model results and lidar measurements in several earlier studies (e.g., Yuan et al., 2008a). Later,

Pokhotelov et al. (2018) showed agreement between model data and radar SDT tidal measurements for the locations of An-

denes and Juliusruh. For diurnal tides, Portnyagin et al. (2004) found similar amplitudes and also a small enhancement during15

the summer at around 80 km based on medium frequency radar measurements of the diurnal tides between 1990 and 2000.

For each of the three locations in our study, the planetary wave energy shows abnormally high peak values during the winter

when sudden stratospheric warming also is present. According to Matsuno (1971) these warmings are caused by the interaction

of upward propagating planetary waves. The values we find for the planetary wave energy correspond well to earlier studies20

(e.g., Tsuda et al., 1988) with similar values for the kinetic energy reported by Dowdy et al. (2007). The kinetic gravity wave

energy for each location shows larger values at higher altitudes and also during the winter, with values of up to 400 m2s2. The

summer gravity wave energy enhancement, which occurred in Juliusruh at around 80 km can also partly seen with the use of

medium frequency radar data. It is even more apparent with the use of model data (Hoffmann et al., 2010).

25

The 11-year oscillation is found to affect both the observed winds and tides. The strongest influence is on the zonal wind

during the solstices. A study made by Keuer et al. (2007) suggests that for the location of Juliusruh, the strongest influences of

solar radiation on the zonal wind should be at 80 km than above during the winter, as well as, nearly similar influences for all

heights during the summer. Their work suggsts that the meridional component should show no impact from solar radiation on

the winds. Both findings correspond well to our results. For the tidal diurnal component, particularly at the lower mid-latitude30

location of CMOR, there is a strong influence from the 11-year oscillation for heights above ∼ 95 km, while for the SDT

components all three MR are show a noticeable response to the 11-year oscillation during the winter for heights above 90 km.
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7 Conclusions

Measuring long term climatologies (LTCs) in the atmosphere requires continuous and consistent observations. In this study,

we analyzed observations from three MRs at Andenes, Juliusruh, and CMOR (Canada) at mid- and high-latitudes to obtain

LTC in mean winds, diurnal and semidiurnal tides, gravity waves and planetary waves and their latitudinal dependence for the

time period between January 2002 and December 2018.5

The focus of this study is to characterize the LTC and solar cycle effects on mean winds, atmospheric tides, gravity wave and

planetary wave energy at three different latitudes. Our results demonstrate that it is valuable to sustain continuous observations

at the MLT region at several locations as there is no common LTC or solar cycle response. Although the we provide confidence

levels with our measurements, the uncertainties depend on the chosen time windows. However, the very long data sets used in10

our study shows that there is a significant year-to-year variability.

Our main specific conclusions are:

– Mean wind climatologies show similar patterns between the mid- and high latitudes. However, there is a clear latitudinal

dependence of the summer zonal mesospheric jet reversal altitudes from westward to eastward winds, which increases

with increasing latitude. There are also remarkable differences in the eastward zonal winds during the winter time15

(December - February), which decreases with latitude as well. However, only the Canadian MR shows a zonal wind

reversal to westward winds above 100 km altitude. Meridional wind climatologies also reflect the latitudinal dependence

with northward winds during winter and southward winds in summer. In particular, the magnitude of the southward

wind increases with decreasing latitude and the altitude of the meridional jet corresponds to the altitude behavior of the

summer zonal wind reversal.20

– The linear change of the zonal and meridional seasonal winds indicate different latitudinal tendencies for each month

and component. The most prominent changes are the southward acceleration of the meridional winds at Andenes, the

northward acceleration and, thus, weakening of the southward meridional winds at Juliusruh from June to September.

CMOR shows the strongest linear response in the zonal wind component with an intensifying summer eastward jet above

84 km and a weakening of the zonal westward winds below.25

– The yearly mean winds show only weak linear changes at CMOR and Juliusruh. At Andenes, the yearly mean wind

speed seems to become more southward and westward with altitude.

– Diurnal tides show a strong polarization between the zonal and meridional component. Above Andenes and Juliusruh

the meridional tide amplitude exceeds the zonal component. The diurnal tide shows only a weak latitudinal dependence

of the meridional component, but a significant increase of the zonal amplitude at the latitude of CMOR. Diurnal tides30

indicate almost no significant linear changes at the investigated latitudes.

– The climatology of the semidiurnal tide shows the highest amplitudes at mid-latitudes above Juliusruh and a similar

pattern at all latitudes. The semidiurnal tide shows a circular polarization, with a similar pattern of the zonal and the
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meridional component. Only during the fall transition above the CMOR MR does the semidiurnal tide appear to to be

elliptically polarized. During September the zonal amplitude exceeds the meridional component.

– Semidiurnal tides show latitudinal dependent linear responses. Above Andenes and during the winter months (November,

December) the SDT amplitude decrease with about 10 m/s/decade amplitude above 90 km altitude. The mid-latitude

station Juliusruh exhibits almost no significant linear change of the SDT. The mid-latitude station CMOR shows the5

most significant linear changes of the SDT. During the winter months (November, December, January) SDT amplitudes

increase by 5 m/s/decade. Further, SDT amplitudes during the fall transition (October) seem to be further weakening.

– The planetary wave activity shows a large year-to-year variability and latitudinal dependence with the strongest activity

at the polar latitudes. Juliusruh and CMOR MR indicate a weaker mean activity compared to Andenes.

– The gravity wave activity also shows a distinct seasonal pattern at all three latitudes with a maximum during the winter10

months (December, January, February) and late summer (September) above 90 km. Andenes and Juliusruh exhibit a

secondary much weaker enhancement in June, July, August below 80 km altitude. CMOR shows a significant increase

in the GW energies at higher altitudes compared to the other two stations.

– The mean winds also exhibit a significant amplitude response to an 11-year oscillation. In particular, the zonal mean

winds show a characteristic seasonal solar cycle effect. During summer all three stations exhibit an 11-year oscillation15

with an amplitude of 3 - 5 m/s in the zonal component below 82 km altitude. The winter months (November, December,

January, February) show a solar cycle response below 82 km at mid- and high latitudes and from November to December

a relevant solar cycle amplitude between 84 - 95 km at Andenes and CMOR.

– The solar cycle response to the DT is less prominent. Andenes shows some weak amplitude modulation in the meridional

component above 90 km between April and November. Almost no solar cycle effect is visible above Juliusruh. CMOR20

shows the strongest solar cycle effect in both wind components during summer above 95 km altitude and in the zonal

component from January to April.

– The SDT exhibits a clear 11-year response at mid- and high latitudes. Due to the circular polarization of the SDT the

zonal and meridional winds show similar pattern of the confidence levels and amplitudes. All three stations exhibit a

strong solar cycle amplitude of 5 - 8 m/s from October to November and in the altitude range between 84 - 100 km. The25

Canadian station presents also a significant change from January to March above 100 km.

Data availability. The Andenes and the Juliusruh radar data are available upon request from Gunter Stober (stober@iap-

kborn.de).

The CMOR radar data are available upon request from Peter Brown (pbrown@uwo.ca).
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Figure 1. Decomposition of the observed wind (top) into the mean wind and tidal component (middle), and the gravity wave residuum
(bottom) for Andenes 01/09/2017 - 11/09/2017. Note the different labels of the colorbar.
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Figure 2. Composite of zonal (left) and meridional (right) wind component for the Andenes (top), Juliusruh (middle), and the CMOR
(bottom). The black line corresponds to the wind reversal. Note the different labels of the colorbar.
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Figure 3. Observed zonal (left) and meridional (right) wind components for Andenes (top), Juliusruh (middle), and CMOR (bottom) for the
according the location available data series. Note the different labels of the colorbar.
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Figure 4. Seasonal mean zonal (left) and meridional (right) wind components for Andenes (top), Juliusruh (middle), and CMOR (bottom)
for the according the location available data series. Note the different labels of the colorbar.
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Figure 5. Linear long-term changes of zonal (left) and meridional (right) wind for Andenes (top), Juliusruh (middle), and CMOR (bottom).
Note the different labels of the colorbar. The solid black lines corresponds to 95% significance, the dashed black lines to the 90% significance.
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Figure 6. Linear long-term changes of zonal (red) and meridional (blue) wind, based on annual values for Andenes (top), Juliusruh (middle),
and CMOR (bottom). The errorbars corresponds to the statistical variance.
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Figure 7. Time-series of the zonal (left) and meridional (right) diurnal tidal component for Andenes (top), Juliusruh (middle), and CMOR
(bottom).
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Figure 8. Composites of the zonal (left) and meridional (right) diurnal tidal component for Andenes (top), Juliusruh (middle), and CMOR
(bottom).
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Figure 9. Linear long-term changes of zonal (left) and meridional (right) diurnal tidal component for Andenes (top), Juliusruh (middle), and
CMOR (bottom). The solid black lines corresponds to 95% significance, the dashed black lines to the 90% significance.
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Figure 10. Same as Figure 7, but for the semidiurnal tidal components.
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Figure 11. Same as Figure 8, but for the semidiurnal tidal components.
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Figure 12. Same as Figure 9, but for the semidiurnal tidal components.
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Figure 13. Time-series of planetary wave energy for Andenes (top), Juliusruh (middle), and CMOR (bottom). The red (green) bold arrows
corresponds to winter with a major (minor) sudden stratospheric warming.
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Figure 14. Time-series of kinetic gravity wave energy for Andenes (top), Juliusruh (middle), and CMOR (bottom).
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Figure 15. Composite of kinetic gravity wave energy for Andenes (top), Juliusruh (middle), and CMOR (bottom).
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Figure 16. Linear change of the solar radiation on the zonal (left) and meridional (right) wind for Andenes (top), Juliusruh (middle), and
CMOR (bottom). The solid black lines corresponds to 95% significance, the dashed black lines to the 90% significance.
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Figure 17. Linear change of an 11-year oscillation on the diurnal zonal (left) and meridional (right) tidal component for Andenes (top),
Juliusruh (middle), and CMOR (bottom). The solid black lines corresponds to 95% significance, the dashed black lines to the 90% signifi-
cance.
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Figure 18. Same as Figure 17, but for the semidiurnal component.
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